
BACKTALK

November 2005 www.stsc.hill.af.mil 31

Let me start by pointing out that I am a compulsive list-
maker and planner. As a military brat, I grew up over-

seas. Recently, I decided to take a vacation to Istanbul,
Turkey where my father had been stationed from 1964 to
1966. To me, a large part of the fun of a vacation is the
preparation and planning. Making lists – what to carry, what
sites to visit ranked by importance (with categories of
Essential, Important, or Optional) – is exhilarating. To me,
half of the fun is examining all the tourist guides, and
savoring the experience of the trip by preparing for it.

When I showed my co-
workers my list of sites I want-
ed to visit, sorted both by dis-
trict and importance, the word
geek kept creeping up in their
responses.

On the other hand, these
obsessive-compulsive traits
seem to be a good thing when
talking about design.

When you mention design to
most developers, they start
thinking of program design.
Now program design is indeed
one part of design, and a very
important part. Program (or
module) design is where you
convert the algorithms and
logic of the design into exe-
cutable code, assuming that the
algorithm and logic were avail-
able – assuming that the developer doesn’t know more than
the designer – and improve the logic.

Module design is the easy part of design, however.
Design, depending upon the source and reference cited,
consists of at least four phases: architecture design, interface
design, data design, and module design. This ordering also
captures the correct order of importance and difficulty.

Architectural design is where a grand designer sets forth
the vision of the system. It includes what the major sub-
sections are, the major functionality, and general feeling of
how the overall system is going to work. Even with auto-
mated tools, this step is hard. It is typically said that the
architectural design should have a feel to it that says, “Well,
of course this is the way that the system is supposed to look.”
It should appear simple. Unfortunately, as system designers
know, simplicity is very difficult to achieve. Without a good
architecture, however, the system never seems to work well
– tasks have to be shared across major subsystems, increas-
ing complexity, and decreasing cohesion.

As part of the architectural design, interfaces have to be
established and enforced. In a perfect world, this step
should be relatively simple. Unless, of course, you are deal-
ing with legacy systems that already have existing interfaces;
interfaces that were, at best, designed using 30-year-old

functional decomposition, and do not fit well with object-
oriented languages of the present.

When I teach design, I tell my students that 75 percent
of all errors will eventually be traced to poor interfaces.
Most don’t believe me at first, but eventually find out that I
was right. The problem with interface incompatibilities is
that they often don’t show up during unit testing, and can-
not be discovered until integration testing. Of course, the
later in the life cycle that errors are discovered, the more
expensive they are to fix.

Do the words “Boyce-
Codd Normal Form” mean
anything to you? How about
“First, Second, or Third
Normal Form”? If so, you’re
in the minority. These terms
refer to relationships be-
tween data and keys. Twenty
years ago, you wouldn’t have
dreamt of designing a data-
base without having an
expert determine an opti-
mum arrangement of keys
and relationships. Now,
unfortunately, cheap disk
storage and fast processors
allow data to be thrown togeth-
er. However, as applications
evolve, grow, and are modi-
fied due to changing and new
requirements, bad data

design can slow down your application. It can also con-
tribute to problems with duplication of data, along with
consistency and correctness of the data.

In short: design is hard, very hard. The larger and more
complex the application, the more important design
becomes. If you have a small application that’s going to
exist on the Web for a few months at the most, design is no
problem. On the other hand, if you have a $10 million proj-
ect, projected to interface with existing Department of
Defense systems with an expected life of 20 years, design is
critical.

Of course, you can probably get a working system with-
out much design. Enough to get user sign-off. Of course,
the first time you try and make any modifications or addi-
tions to the system, the lack of a design will cause it to fall
apart like a house of cards.

Not to worry. There’s always time and money to do it
over with a good design, right?

— David A. Cook, Ph.D.
Senior Research Scientist

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Design? We Don’t Need No Stinkin’ Design!
(or “How to Fail Without Really Trying”)

